Set Predicates in SQL: Enabling Set-Level Comparisons for Dynamically Formed Groups

Chengkai Li1, Bin He2, Ning Yan3, Muhammad Safiullah3 *, Rakesh Ramegowda1

1cli@uta.edu, {ning.yan,rakesh.ramegowda}@mavs.uta.edu, University of Texas at Arlington
2binhe@us.ibm.com, IBM Almaden Research Center
3assad.safiullah@live.com, Microsoft, Seattle, WA

Abstract— The scalar-level predicates in SQL become increasingly inadequate to support a new class of operations that require set-level comparison semantics, i.e., comparing a group of tuples with multiple values. Complex SQL queries composed by scalar-level operations are often formed to obtain even very simple set-level semantics. Such queries are not only difficult to write but also challenging for the database engine to optimize, thus can result in costly evaluation. To address this problem, this paper proposes to augment SQL with a new type of predicates, set predicates, to bring out the otherwise obscure semantics and thus facilitate the direct and efficient support. We proposed three approaches to answer queries with set predicates: a query rewriting method, an aggregate function-based method and a bitmap index-based method. Results from comprehensive experiments over synthetic and TPC-H data show that the bitmap index-based approach can significantly outperform the other two. Moreover, we present a histogram-based probabilistic method of set predicate selectivity estimation, for optimizing queries with multiple predicates. The experiments also verify the accuracy of the estimation and its effectiveness in optimizing queries.

I. INTRODUCTION

With real-world database applications becoming more sophisticated, there is a high demand of querying data with the semantics of set-level comparisons. For instance, a company may search their resume database for job candidates with a set of mandatory skills; in business decision making, an executive may want to find the departments whose monthly average ratings for customer service in this year have been both good and bad, i.e., the set of ratings subsumes \{excellent, poor\}; in online advertisement, a marketing strategist may want to find all the Websites that publish ads for ING and Emigrant but not HSBC yet. Since these banks have similar business, HSBC can be a potential advertiser for those publishers.

In database design, without explicit support, set-valued attribute is often modeled by a separate table. For example, a table Resume_Skills (id, skill) can be used to connect a set of skills to job candidates in another table. A GROUP BY clause can then be used to dynamically group the tuples by id, with the values on attribute skill in the same group forming a set. The problem is that current GROUP BY clause can only do scalar value comparison by an accompanying HAVING clause. For instance, the SUM/COUNT/AVG/MAX function will produce a single numeric value which is compared to a constant or another single aggregate value. A set-level comparison such as the set of skills subsuming \{‘Java programming’, ‘Web services’\} cannot be accommodated without complex SQL queries. (Section III-A demonstrates such SQL queries.)

The data modeling literature has long recognized that set-valued attributes provide a concise and natural way to model complex data concept such as set [16], [21]. Many DBMSs nowadays support the definition of attributes involving a set of values, e.g., nested table in Oracle and SET data type in MySQL. For example, the “skill” attribute in the resume table can be defined as a set data type. Set operations can thus be natively supported on such attributes. Previous research has extensively studied query processing on set-valued attributes and set containment joins [7], [19], [11], [12]. Although set-valued attributes together with set containment joins can be used to support set-level comparisons, this solution has inherent limitations: 1) They have to be pre-defined at the schema definition time; 2) A set can only cover one attribute and cannot be across multiple attributes.

In real application scenarios, especially OLAP and decision making, the groups and the corresponding sets are often dynamically formed according to the query needs. For instance, in the aforementioned customer service rating example, the sets are formed by departments, i.e., the monthly ratings of each department form a set. In a different query, the sets may be formed by individual employees. Set-valued attributes, being pre-defined, cannot support such dynamic set formation.

Moreover, the definition of a set may be over multiple attributes. Take the example of online advertisement. The strategist may want to discover the Websites that publish ads for ING with good profit returns, because those Websites are already proven to be highly profitable with bank ads. In this case, the set is defined over both the advertiser and the profit attribute. In many systems a set-valued attribute is only defined on a single attribute, thus cannot capture the cross-attribute association in the example. Implementations such as nested table in Oracle allow sets over multiple attributes but do not easily support set-level comparisons on such attributes.

Observing the demand for complex and dynamic set-level comparisons in databases, and limitations of current SQL language and set-valued attribute, we propose to tackle the challenge with the introduction of a new concept of set predicate in HAVING clause. While we elaborate its syntax in detail in Section II, below we present several examples of queries with set predicates.

To find the candidates with skills “Java programming” and “Web services”, the query can be as follows:

```
SELECT id FROM Resume_Skills GROUP BY id
HAVING SET(skill) CONTAIN {'Java','Web services'}
```

* Work performed while Muhammad Safiullah was a student at UTA.
Given the above query, after grouping, a dynamic set of values on attribute skill is formed for each unique id, and the groups whose corresponding SET(skill) contain both “Java programming” and “Web services” are returned.

For the decision making example, suppose we have a table Ratings(department, avg_rating, month, year). The following query finds the departments whose monthly average ratings in 2009 have always been poor (assuming ratings are from 1 to 5). Here CONTAINED BY is used to capture the set-level condition.

```
SELECT department FROM Ratings WHERE year = 2009
GROUP BY department
HAVING SET(avg_rating) CONTAINED BY (1,2)
```

Set predicates can cover multiple attributes. Consider the online advertisement example. Suppose the table is Site_Statistics(website, advertiser, CTR). The following query finds the Websites that publish ads for ING with more than 1% click-through rate (CTR) and do not publish ads for HSBC yet:

```
SELECT website FROM Site_Statistics GROUP BY website
HAVING SET(advertiser,CTR) CONTAIN ({'ING', (0.01,+)} AND NOT (SET(advertiser) CONTAIN ('HSBC'))
```

In this example, the first set predicate involves two attributes and the second set predicate has the negation of CONTAIN. Note that we use (0.01,+) to represent the partial condition CTR > 0.01.

Without the explicit notion of set predicates, the query semantics can be captured by using sub-queries connected by SQL set operations (UNION, INTERSECT, EXCEPT), in coordination with join and GROUP BY. As Section III-A will show, such queries can be quite complex for users to formulate and difficult to optimize for a database engine, thus can result in unnecessarily costly evaluation. On the contrary, the proposed construct of set predicate explicitly enables set-level comparisons. The concise syntax not only makes query formulation simple but also facilitates native efficient support of such queries in a query engine.

Our work is mostly related to set-valued attributes and set containment joins [7], [19], [11], [12]. In comparison, the proposed solution of set predicates has several critical advantages: (1) Unlike set-valued attributes, which bring significant hassles in redesigning database storage for the special data type of set, set predicate requires no change in data representation and storage engine, therefore can be directly incorporated into any standard relational databases; (2) Using set predicates, users can dynamically form set-level comparisons based on their query needs with no limitation caused by database schema. On the contrary, for set-valued attributes, sets are statically pre-defined in the schema design phase. Therefore set-level comparisons can only be possible on set-valued attributes, and non-set query conditions could not be easily supported on set-valued attributes. (3) It allows cross-attribute set-level comparison, which is not supported by set-valued attributes.

We developed three approaches to implement set predicates: (1) The query rewriting approach rewrites a SQL query with set predicates into standard SQL statements. It can be directly deployed by extending query parser, without changing query processing engine. However, it can be hard to optimize complex rewritten queries and thus query performance can suffer. The resulting query plans could involve multiple subqueries with grouping and set operations. (2) The aggregate function-based approach handles a set predicate like a user-defined aggregate function [4]. The deployment again would be simple. Instead of wasteful evaluation of subqueries, only one pass of table scan could be sufficient. (3) The bitmap index-based approach evaluates queries with set predicates by exploiting bitmap index, which is known for its efficient support of aggregate queries in OLAP and data warehousing. This approach can significantly outperform the aggregate function-based approach because it focuses on only tuples from the groups that satisfy the conditions and only the bitmaps for relevant columns.

Universal quantification and relational division are powerful for analyzing many-to-many relationships and set-valued attributes [5]. An example universal quantification query is to find the students that have taken all computer science courses required to graduate. It is therefore a special type of set predicates with CONTAIN operator over a set of constants formed by all the values of an attribute in a table, e.g., Courses. By contrast, the proposed set predicate supports CONTAINED BY and EQUAL, in addition to CONTAIN. The hash-division algorithm for universal quantification [5] was shown to be superior than all prior algorithms. Our aggregate function-based approach is essentially the hash-division method. However, it handles not only CONTAIN but also CONTAINED BY and EQUAL. Moreover, we will show that the bitmap index-based approach significantly outperforms the aggregate function-based approach.

A query can have multiple set predicates connected by logic operations (AND, OR, NOT). The straightforward approach to evaluate such a query is to exhaustively process the predicates and perform set operations over their resulting groups. It can be an overkill. A useful optimization rule is to prune unnecessary set predicates during query evaluation. Given a query with n conjunctive set predicates, the predicates can be sequentially evaluated. If no group qualifies after m predicates are processed, we can terminate query evaluation without processing the remaining predicates. The number of “necessary” predicates before we can stop, m, depends on the evaluation order of predicates. We design a method to select a good order of predicate evaluation, i.e., an order that results in a small m, thus a cheap evaluation cost. Our idea is to evaluate conjunctive (disjunctive) predicates in the ascending (descending) order of their selectivities, where the selectivity of a predicate is its number of satisfying groups. We thus designed a probabilistic approach to estimate set predicate selectivity by exploiting histograms in databases.

In summary, this paper makes the following contributions:

- We proposed to extend SQL with new set predicate for an important class of analytical queries, which otherwise would be difficult to write and optimize (Section II).
- We designed three query evaluation approaches for set
Table: SC

<table>
<thead>
<tr>
<th>semester</th>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall09</td>
<td>Mary</td>
<td>CS101</td>
<td>4</td>
</tr>
<tr>
<td>Fall09</td>
<td>Mary</td>
<td>CS102</td>
<td>2</td>
</tr>
<tr>
<td>Fall09</td>
<td>Tom</td>
<td>CS102</td>
<td>4</td>
</tr>
<tr>
<td>Spring10</td>
<td>Tom</td>
<td>CS103</td>
<td>3</td>
</tr>
<tr>
<td>Fall09</td>
<td>John</td>
<td>CS101</td>
<td>4</td>
</tr>
<tr>
<td>Fall09</td>
<td>John</td>
<td>CS102</td>
<td>4</td>
</tr>
<tr>
<td>Spring10</td>
<td>John</td>
<td>CS103</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 1. A classic student and course example.

predicates, including the baseline query rewriting approach and aggregate function-based approach (Section III) and the bitmap index-based approach (Section IV).

- We developed a histogram-based probabilistic method of set predicate selectivity estimation, for optimizing queries with multiple predicates. Particularly our method determines the evaluation order of the predicates and stops early without evaluating unnecessary predicates. (Section V)
- We conducted extensive experiments to evaluate and compare the three approaches, over both benchmark and synthetic data. We also investigated the effects of various query parameters and data characteristics on these approaches. Moreover, our experiments verify the accuracy and effectiveness of the predicate ordering method. (Section VI)

II. The Syntax of SET Predicates

We extend SQL syntax to support set predicates. Since a set predicate compares a group of tuples to a set of values, it fits well into GROUP BY and HAVING clauses. Specifically in the HAVING clause there is a Boolean expression over multiple regular aggregate predicates and set predicates, connected by logic operators ANDs, ORs, and NOTs. The syntax of a set predicate is:

\[
\text{set_predicate} ::= \text{attribute_set} \ \text{set_operator} \ \text{constant_values}
\]

\[
\text{attribute_set} ::= \text{SET}(v_1, ..., v_m)
\]

\[
\text{set_operator} ::= \text{CONTAIN} | \text{CONTAINED BY} | \text{EQUAL}
\]

\[
\text{constant_values} ::= \{(v_1^1, ..., v_n^1), ..., (v_1^j, ..., v_n^j)\},
\]

where \(v_i^j \in \text{Dom}(v_i)\), i.e., each \(v_i^j\) can be a value (integer, floating point number, string, etc.) in the domain of attribute \(v_i\). Succinctly we denote a set predicate by \(\text{SET}(v_1, ..., v_m) \ \text{op} \ \{(v_1^1, ..., v_n^1), ..., (v_1^j, ..., v_n^j)\}\), where \(\text{op}\) can be \(\supseteq\), \(\subseteq\), and \(=\), corresponding to the set operator CONTAIN, CONTAINED BY, and EQUAL, respectively.

We further extend relational algebra to include set predicates for concise query representation. Given relation \(R\), the grouping and aggregation is represented by the following operator \(^1\):

\[
\gamma_{G, A, \mathcal{C}}(R)
\]

where \(G\) is a set of grouping attributes, \(A\) is a set of aggregates (e.g., \(\text{COUNT(*)}\)), and \(\mathcal{C}\) is a Boolean expression over set predicates and conditions on aggregates (e.g., \(\text{AVG(grade)} > 3\)), which may overlap with the aggregates in \(A\). Note that relation \(R\) can be a result of a query.

We now provide examples of SQL queries with set predicates, over the classic student-course table (Figure 1).

Single-Predicate Set Operation: The following query Q1: \(\gamma_{\text{student_course}}(\text{CS101'}, \text{CS102'})(SC)\) identifies the students who took both CS101 and CS102. \(^2\) The results are Mary and John. The keyword \(\text{CONTAIN}\) represents a superset relationship, i.e., the set variable \(\text{SET(courset)}\) is a superset of \(\{\text{CS101'}, \text{CS102'}\}\).

\[
Q1: \text{SELECT student FROM SC GROUP BY student } \text{HAVING SET(course) CONTAIN ('CS101', 'CS102')}
\]

A more general query can include regular WHERE clause and conditions on aggregate functions in HAVING. In the following Q2: \(\gamma_{\text{student_COUNT(grade)}(\text{CS101'}, \text{CS102'})}(SC)\) &\& \(\text{AVG(grade)} > 3.5\) \((\text{WHERE semester='Fall09'})(SC)\), we look for students with average grade higher than 3.5 in FALL09 and have taken both CS101 and CS102 in that semester. It also returns the number of courses they took in that semester.

\[
Q2: \text{SELECT student, COUNT(*) FROM SC WHERE semester='Fall09' GROUP BY student HAVING SET(course) CONTAIN ('CS101', 'CS102') AND AVG(grade)>3.5}
\]

We use \(\text{CONTAINED BY}\) for the reverse of \(\text{CONTAIN}\), i.e., the subset relationship. The following query selects all the students whose grades are never below 3. The results are Tom and John. Note that set predicates follow set semantics instead of bag semantics, therefore John’s grades, \(\{4,4,4\}\), is subsumed by \(\{4,3\}\).

\[
Q3: \text{SELECT student FROM SC GROUP BY student HAVING SET(grade) CONTAINED BY \{(4,3)\}}
\]

To select the students that have only taken CS101 and CS102, the following query uses \(\text{EQUAL}\) to represent the equal relationship in set theory. Its result contains only Mary.

\[
Q4: \text{SELECT student FROM SC GROUP BY student HAVING SET(course) EQUAL \{'CS101', 'CS102'\}}
\]

Multi-Predicate Set Operation: A query with multiple set predicates can be supported by using Boolean operators, i.e., AND, OR, and NOT. For instance, to identify all the students whose grades are never below 3, except those who took both CS101 and CS102, we can use \(\text{NOT (SET(course) CONTAIN \{'CS101', 'CS102'\}) AND SET(grade) CONTAINED BY \{(4,3)\}}\)

Multi-Attribute Set Operation: The query syntax also allows cross-attribute comparisons, e.g., we use \(\text{SET(course, grade)}\) \(\text{CONTAIN \{\('CS101', 4\'), ('CS102', 2)\}}\) for all the students who received grade 4 in CS101 but 2 in CS102.

Constant Values from Subqueries and in Ranges: The constant values in the set predicate can be from the result of a subquery, e.g., \(\text{SET(course)}\) \(\text{CONTAIN (SELECT course FROM core-course)}\). Moreover, for data types such as numeric attributes and dates, the constant value can be a range. One example is the online advertisement query in Section I.

III. Two Baseline Approaches

A. Query Rewriting Approach

One easy-to-deploy approach is to rewrite queries with set predicates into standard SQL queries. Due to space limitations, we only provide a summary here. Details of the formal and

\(^1\)Note that there is no agreed-upon notation for grouping and aggregation in relational algebra.

\(^2\)To be rigorous, it should be \(\text{course} \supseteq \{\text{CS101'}, \text{CS102'}\}\), based on the aforementioned syntax.
systematic rewriting procedure and examples can be found in Appendix I. The basic idea is to rewrite a set predicate by using SQL set operations. A \textsc{contain} predicate with \(m\) constant values can be rewritten using \(m-1\) \textsc{intersect} operations. A \textsc{contained by} predicate can be rewritten by using \textsc{except}. The rewriting of \textsc{equal} predicates naturally combines that of \textsc{contain} and \textsc{contained by}. To rewrite more complex queries with multiple predicates, we use the rewriting of individual predicates as the building blocks and connect them together by their logical relationships. If the \textsc{select} clause in the query contains aggregate values, the rewritten query needs to be joined with the original table on the grouping attributes.

The advantage of the rewriting approach is that it requires no change inside query engine. However, the rewritten query can be complex thus difficult to optimize for a database engine, resulting in over-costly evaluation plan. While more details on our experiments with this approach are in Section VI, below we give an example to just get a sense of the issues.

Figure 2 illustrates a PostgreSQL query plan for the rewritten query of \(\gamma_{g,\text{SUM}(a)} v \subseteq \{1,2,3\}(R)\) over a 100K-tuple table \(R\) with 1K groups on \(g\), resulting in 10 qualifying groups. The plan is hand-picked and the most efficient among the ones we have investigated. It also shows the time spent on each operator (which recursively includes the time spent on all the operators in the sub-plan tree rooted at the given operator, due to the effect of the iterators’ \textsc{GetNext()} interfaces.) The real PostgreSQL plan had more detailed operators. We combine them and give the combined operations more intuitive names, for the ease of presentation.

Figure 2 shows, given the simple original query, the rewritten query involves a set difference operation (\textsc{except}) and a join. The set difference is between \(R\) itself (100K tuples) and a subset of \(R\) (98998 tuples that do not have 1, 2, or 3 on attribute \(v\)). Both sets are large, making the \textsc{except} operator cost much more than a simple sequential scan.

B. Aggregate Function-Based Approach

The example at the end of Section III-A indicates that the rewritten query obscures the semantics of set predicate, making it very difficult for the query optimizer to optimize. With the new syntax in Section II bringing forward the semantics explicitly, a set predicate-aware query plan could potentially be much more efficient by just scanning the table and processing the tuples sequentially. The key to such a direct approach seems to be processing the grouping and the set-level comparison together, through a one-pass iteration of the tuples, instead of using set operations and joins. In light of this idea, we design another baseline approach, the aggregate function-based method, that handles set predicates as user-defined aggregate functions [4]. The outline of the method is shown in Algorithm 1.

For the ease of presentation, we first assume the simplest query, \(\gamma_{g \oplus a} v \text{ op } \{v^1, \ldots, v^n\}(R)\), i.e., a query with one grouping attribute \((g)\), one aggregate for output \((\oplus a)\), and one set predicate defined by a set operator \((\subseteq, \subseteq_2, \text{ or } =)\) over a single attribute \((v)\). Algorithm 1 uses the standard iterator interface \textsc{GetNext()} to go through the tuples in \(R\), may it be from a sequential scan over table \(R\) or the sub-plan over subquery \(R\). Follow the common implementation of user-defined aggregate functions in database systems, e.g., PostgreSQL, a set predicate is treated as an aggregate function, defined by an initial state (line 3), a state transition function (line 4-12), and a final calculation function (line 15-16). The hash table \(M\) maintains a mask value for each unique group. The bits in the binary representation of a mask value indicate which of the constant values \(v^1, \ldots, v^n\) in the set predicate are contained in the corresponding group. (The \(|\) in line 9 is the bitwise OR operator instead of logical OR \(||\).) If the mask value equals \(2^n - 1\), where \(n\) is the number of the constant values, the corresponding group contains all the constant values. The algorithm sketch covers the three kinds of set operators, \textsc{contain}, \textsc{contained by}, and \textsc{equal}.

The above algorithm can be conveniently extended for general queries with set predicates. Such queries can be denoted...
by $\gamma_{A,R}(C)$, as introduced in Section II. The aggregates that are in A (to appear in the SELECT clause) or in the conditions in C (to appear in HAVING) can be evaluated simultaneously with set predicates. The aggregate $\oplus a$ in Algorithm 1 already demonstrates that.

We have assumed that one-pass algorithm is sufficient, i.e., memory is available for storing the hash tables for all the groups. If the required memory size is too large to be affordable, we can adopt the standard two-pass hash-based or sort-based aggregation method in DBMSs. The table is sorted or partitioned by a hash function so that the tuples in the same group can be loaded into memory and aggregations over different groups can be handled independently.

IV. Bitmap Index-Based Approach

Our third approach is based on bitmap index [14], [15]. Given a bitmap index on an attribute, there exists a bitmap (a vector of bits) for each unique attribute value. The length of the vector equals the number of tuples in the indexed relation. In the vector for value x of attribute v, its ith bit is set to 1, when and only when the value of v on the ith tuple is x, otherwise 0. With bitmap indices, complex selection queries can be efficiently answered by bitwise operations (AND (&), OR(|), XOR(^), and NOT(~)) over the bit vectors. Moreover, bitmap indices enable efficient computation of aggregates such as SUM and COUNT [15].

The idea of using bitmap index is in line with the aforementioned intuition of processing set-level comparison by a one-pass iteration of the tuples (in this case, their corresponding bits in the bit vectors). On this aspect, it shares the same advantage as the aggregate function-based approach. However, this method also leverages the distinguishing characteristics of bitmap index, making it potentially more efficient than the aggregate function-based approach. Specifically, using bitmap index to process set predicates brings several advantages. (1) We only need to access the bitmap indexes on columns involved in the query, therefore the query performance is independent of the width of the underlying table. (2) The data structure of bit vector is efficient for basic operations such as membership checking (for matching constant values in set predicates). Bitmap index gives us the ability to skip tuples when they are irrelevant. Given a bit vector, if there are chunks of 0s, they can be skipped together due to effective encoding of the vector. (3) The simple data format and bitmap operations make it convenient to integrate the various operations in a query, including the dynamic grouping of tuples and the set-level comparisons of values. It also enables efficient and seamless integration with conventional operations such as selections, joins, and aggregates. (4) It allows straightforward extensions to handle features that could be complicated, such as multi-attribute set predicates, multi-attribute grouping, and multiple set predicates.

As an efficient index for decision support queries, bitmap index has gained broad interests. Although bitmap index is arguably not as standard as some other index structures such as B+ tree, it is widely adopted in DBMSs. Nowadays, bitmap index is supported in major commercial database systems (e.g., Oracle, SQL Server), and it is often the default (or only) index option in column-oriented database systems (e.g., Vertica, C-Store [22], LucidDB), especially for applications with read-mostly or append-only data, such as OLAP and data warehouses. The state-of-the-art developments of bitmap compression methods [25], [1], [9] and encoding strategies [2], [26], [15] have substantially broaden the applicability of bitmap index. Today’s bitmap index can be applied on all types of attributes (e.g., high-cardinality categorical attributes [24], [25], numeric attributes [24], [15] and text attributes [20]). Studies show that compressed bitmap index occupies less space than the raw data [25], [1] and provides better query performance for equality query [25], range query [24], and aggregation [15]. Bitmap index has also been used for indexing set-valued attributes [13]. A vector represents a value of a set-valued attribute, where each bit in the vector corresponds to a distinct member of the set.

A. Basic Set Predicate Queries

In presenting the bitmap index-based approach, we first focus on the simplest case—a query with only one set predicate, $\gamma_{A,R}(v \, op \, \{v^1, ..., v^n\})(R)$, where op can be any of the set operators \subseteq, \subseteq, and $=$. Section IV-B discusses the extension to more general queries.

One particular type of bitmap index that we use is bit-sliced index (BSI) [20]. Given a numeric attribute on integers or floating-point numbers, BSI directly captures the binary representations of attribute values. The tuples’ values on an attribute are represented in binary format and kept in s bit vectors (i.e., slices), which represent 2^s different values. Categorial attributes can be also indexed by BSI, with a mapping from unique categorical values to integer numbers.

The approach requires that bit-sliced indexes are built on g (BSI(g)) and a (BSI(a)), respectively, and there is a bitmap index on v (BSI(v)), which can be a BSI or any regular bitmap index. With the aforementioned effective compression and encoding schemes, it is affordable to build bitmap indexes on many attributes. Index selection based on query workload could allow a system to selectively create indexes on attributes that are more likely to be used in queries. Some systems (e.g., DB2, PostgreSQL) build bitmap indexes on the fly when the query optimizer determines they are beneficial. We do not consider such scenario and we focus on bitmap indexes that are built before query time.

Note that the algorithm presented below will also work if we have other types of bitmap indexes on g and a, with modifications that we omit. The advantage of BSI is that it indexes high-cardinality attributes with small number of bit vectors, thus improves the query performance if the grouping or aggregation is on such high-cardinality attribute.

Example 1: Given the data in Figure 1 and query $\gamma_{\text{student},AVG(\text{grade})} \text{COURSE} \text{op} \{\text{‘CS101’, ‘CS102’}\}(\text{SC})$, Figure 3 shows the bitmap indexes on g (student), v (course), and

3Note that line 5 of Algorithm 1 only shows the state transition of \oplus. The initialization and final calculation steps are omitted.
Algorithm 2 Basic Set Operation (∪, ⊆, =)

Input: Table \(R(g, a, v) \) with \(t \) tuples;
Query \(Q = \{v_1, \ldots, v^n\}(R) \);
bit-sliced index BSI(a), BSI(g), and bitmap index BI(v).

Output: Qualifying groups \(g \) and their aggregate values \(\oplus \alpha \)

\(gID: \) array of size \(t \), storing the group ID of each tuple */
// A: hash table for aggregate values */
// M: hash table for constant value masks */
// G: hash table for Boolean indicators of qualifying groups */

// Step 1. get the vector for each constant in the predicate */
1: for each \(v^i \) do
2: \(vec_{v^i} \leftarrow \text{QUERYBI}(BI(v), v^i) \)
3: \(gID \leftarrow \text{group ID for each tuple} */
4: for each bit slice \(B_i \) in BSI(g), \(i \) from 0 to \(t-1 \) do
5: for each set bit \(b_k \) in bitmap \(B_i \) do
6: \(gID[k] \leftarrow gID[k] + 2^i \)
7: for each \(k \) from 0 to \(t-1 \) do
8: if group \(gID[k] \) is not in hash table \(A.M.G \) then
9: \(M[gID[k]] \leftarrow 0 \); also initialize \(A[gID[k]] \) according to the aggregate function.
10: \(G[gID[k]] \leftarrow \{\text{op is } \subseteq\} \)

// Step 3. find qualifying groups */
11: if \(op \in \{\cup, =\} \) then
12: for each bit vector \(vec_{v^i} \) do
13: for each set bit \(b_k \) in \(vec_{v^i} \) do
14: \(M[gID[k]] \leftarrow M[gID[k]] \oplus 2^{i-1} \)
15: for each group \(g \) in hash table \(M \) do
16: if \(M[g] = 2^t-1 \) then \(G[g] \leftarrow \text{True} \)
17: if \(op \in \{\subseteq, =\} \) then
18: for each set bit \(b_k \) in \(\sim(vec_{v^i} \ldots vec_{v^n}) \) do
19: \(G[gID[k]] \leftarrow \text{False} \)

// Step 4. aggregate the values of \(a \) for qualifying groups */
20: for each \(k \) from 0 to \(t-1 \) do
21: if \(G[gID[k]] \) then
22: \(agg \leftarrow 0 \)
23: for each slice \(B_i \) in BSI(a) do
24: if \(b_k \) is set in bitmap \(B_i \) then \(agg \leftarrow agg + 2^i \)
25: \(A[gID[k]] \leftarrow A[gID[k]] \oplus agg \)
26: for each group \(g \) in hash table \(M \) do
27: if \(G[g] \) then print \((g, A[g])\)

\(a(\text{grade}) \). BSI(student) has two slices. For instance, the fourth bits in \(B_1 \) and \(B_0 \) of BSI(student) are 0 and 1, respectively. Thus the fourth tuple has value 1 on attribute student, which represents ‘Tom’ according to the mapping from the original values to numbers. There is also a BSI(grade) on grade. The bitmap index on course is not a BSI, but a regular one where each unique attribute value has a corresponding bit vector. For instance, the bit vector \(B_{CS101} \) is 1000100, indicating that the 1st and the 5th tuples have ‘CS101’ as the value of course.

The outline of the algorithm for processing the query is in Algorithm 2. It takes four steps. Step 1 is to get the tuples having values \(v^1, \ldots, v^n \) on attribute \(v \). Given value \(v^j \), the function \(\text{QUERYBI} \) in line 2 queries the bitmap index on \(v \), BI(v), and obtains a bit vector \(vec_{v^j} \), where the \(k \)th bit is set (i.e., having value 1) if the \(k \)th tuple of \(R \) has value \(v^j \) on attribute \(v \). Note that this is the basic functionality supported by every bitmap index.

Step 2 is to get the group IDs, i.e., the values of attribute \(g \), for the tuples in \(R \), by querying BSI(g). The group IDs are calculated by iterating through the slices of BSI(g) and summing up the corresponding values for tuples with bits set in these vectors.

Step 3 gets the groups that satisfy the set predicate, based on the vectors from Step 1. The algorithm outline is applicable to any of the three set operators, although the details differ. Below we will introduce Step 3 for different operators.

Step 4 gets the aggregates for the qualifying groups from Step 3 by using BSI(a). It is pretty similar to how Step 2 and Step 3 are accomplished. It aggregates the value of attribute \(a \) from each tuple into its corresponding group if it is a qualifying group. The value of attribute \(a \) for the \(k \)th tuple is obtained by assembling the values \(2^{i-1} \) from the slices \(B_i \) when their \(k \)th bits are set. The algorithm outline checks all the bit slices for each \(k \). Note that this can be efficiently implemented by iterating through the bits (from \(0 \) to \(t-1 \)) of the slices simultaneously. We do not show such implementation details in the algorithm outline, for simplicity.

CONTAIN (⊆): In Step 3, a hash table \(M \) maintains a mask value \(M[g] \) for each group \(g \). The mask value has \(n \) bits, corresponding to the \(n \) constant values \((v^1, \ldots, v^n) \) in the set predicate. A bit is set to 1 if there exists at least one tuple in group \(g \) that has the corresponding constant value on attribute \(v \). Therefore for each set bit \(b_k \) in vector \(vec_{v^j} \), the \(j \)th bit of \(M[gID[k]] \) will be set (line 14 of Algorithm 2). (The \(\sim \) in line 14 is the bitwise OR operator instead of logical OR \(|\) \).) Therefore if \(M[g] \) equals \(2^t-1 \) at the end, i.e., all the \(n \) bits are set, the group \(g \) contains tuples matching every constant value in the set predicate, thus satisfies the query (line 16).

We use another hash table \(G \) to record the Boolean indicators of qualifying groups. The values in \(G \) were initialized to \text{True} for every group if the operator is \(\subseteq \) (line 10), otherwise \text{False}.

CONTAINED BY (⊆): If the set operator is \(⊆ \), Step 3 will not use hash table \(M \). Instead, for a set bit \(b_k \) in \(\sim(vec_{v^1} \ldots vec_{v^n}) \) (i.e., the \(k \)th tuple does not match any constant \(v^j \)), the corresponding group \(gID[k] \) could not satisfy the query condition and thus will immediately be disqualified (line 19).

EQUAL (=): Step 3 for EQUAL (=) is naturally a combination of that for \(∪ \) and \(⊆ \). It first marks a group as qualifying if \(g \) is satisfied (line 16), then disqualifies group \(gID[k] \) if \(⊆ \) is not satisfied (line 19).

Example 2: Suppose the query is \(\gamma_{\text{student.AVG(grade)}} \) course \(= \{\text{‘CS101’, ‘CS102’}\}(SC) \), using the bitmap indexes in Figure 3. After the 1st bit of \(vec_{CS101} \) (i.e., \(v^1=\text{‘CS101’} \)) is encountered in line 13, \(M[0]=2^2=1 \) since the 1st tuple in \(SC \) belongs to group 0 (Mary). After the 2nd bit of \(vec_{CS102} \)
(the 1st set bit) is encountered, \(M[0]=1, 2^3=3\). Therefore \(G[0]\) becomes \(True\). Similarly \(G[2]\) (for John) becomes \(True\) after the 6th bit of \(vec_{CS102}\) is encountered. However, since \(\sim(vec_{CS101} \equiv vec_{CS102}) = 0001001, G[2] \) becomes \(False\) after the last bit of 0001001 is encountered in line 18 (i.e., John has an extra course ‘CS103’).

B. General Queries with Set Predicates

A general query \(\gamma_{g,a} C(R)\) may use multiple grouping attributes and multiple set predicates, and each predicate may be defined on multiple attributes. Below we discuss how to extend the method in Section IV-A for such general queries. A query may also return multiple aggregates, e.g., \(\gamma_{g,a} \oplus \{v_1^1, ..., v_1^n\}(R)\), which can be simply handled by repeating the Step 4 of Algorithm 2 for multiple aggregates. Thus such case will not be further discussed.

Multi-Attribute Grouping: Given a query with multiple grouping attributes, \(\gamma_{g,...,g_a} C(R)\), we can treat the grouping attributes as a single combined attribute \(g\). That is, the concatenation of the bit slices of \(BSI(g_1), ..., BSI(g_l)\) becomes the bit slices of \(BSI(g)\). For example, given Figure 3, if the grouping condition is \(GROUP BY \text{student}, \text{grade}\), the \(BSI\) of the combined conceptual attribute \(g\) has 5 slices, which are \(B_1(\text{student}), B_0(\text{student}), B_2(\text{grade}), B_1(\text{grade}), \) and \(B_0(\text{grade})\). Thus the binary value of the combined group \(g\) of the first tuple is 00100.

Multi-Attribute Set Predicates: For a query with multiple attributes in defining the set predicate, \(\gamma_{g,...,g_a} (v_1^1, ..., v_1^m) \oplus \{v_1^1, ..., v_1^m\}, ..., (v_n^1, ..., v_n^m)(R)\), we again can view the concatenation of \(v_1, ..., v_n\) as a combined attribute \(v\). To replace the Step 1 of Algorithm 2, we first obtain the vectors \(vec_{v_1}, ..., vec_{v_m}\) by querying \(BI(v_1), ..., BI(v_m)\). Then the intersection (bitwise AND) of these vectors, \(vec_{v} = vec_{v_1} \& ... \& vec_{v_m}\), gives us the tuples that match the multi-attribute constant \((v_1^1, ..., v_m^j)\).

Multi-Predicate Set Operation: Given a query with multiple set predicates, the straightforward approach is to evaluate the individual predicates independently to obtain the qualifying groups for each predicate. Then we can follow the logic operations between the predicates (AND, OR, NOT) to perform the intersection, union, and difference operations over the qualifying groups. Different orders of evaluating the predicates can lead to different evaluation costs, due to their different “selectivities”, i.e., the number of qualifying groups. We discuss this query optimization issue in Section V.

In a general query, the HAVING clause may also have conditions over regular aggregate expressions, e.g., \(\text{AVG}(\text{grade}) > 3.5\) in Q2. Following the same way as the aggregates in SELECT clause are calculated, in Step 4 of Algorithm 2, we can obtain the multiple aggregates for each group and remove a group from the result if the condition on an aggregate is not satisfied.

Integration and Interaction with Conventional SQL Operations: In a general query \(\gamma_{g,a} C(R)\), relation \(R\) could be the result of other operations such as selections and joins. Logical bit vector operations allow us to integrate the bitmap index-based method for set predicates with the bitmap index-based solutions for selection conditions [2], [26], [15] and join queries [14]. That is, only bitmap-index on the underlying tables (instead of the dynamic result \(R\)) is required. In Section VI-B we present the experimental results of such general queries on TPC-H data [23]. The detailed method of dealing with general queries is in Appendix II. The techniques are similar to those in [10], where bitmap index is used to incorporate clustering with ranking, selections, and joins.

V. OPTIMIZING QUERIES WITH MULTIPLE SET PREDICATES: SELECTIVITY ESTIMATION BY HISTOGRAM

The straightforward approach to evaluate a query with multiple set predicates is to exhaustively process the predicates and perform set operations over their resulting groups. However, this approach can be an overkill. An obvious example is query \(\gamma_{g,a} v \subseteq \{1\}(R) \AND v \supseteq \{1, 2\}(R)\). The constant set of the first predicate is a subset of the second constant set. Evaluating the first predicate is unnecessary because its satisfying groups are always a superset of the second predicate’s satisfying groups. Similarly the second predicate can be pruned if the query uses \(OR\) instead of \(AND\). Another example is \(\gamma_{g,a} v \subseteq \{1\}(R) \AND v \supseteq \{2, 3\}(R)\). The two constant sets are disjoint. Without evaluating either predicate, we can safely report empty result. These examples show that, given multiple predicates on the same set of attributes, we can eliminate the evaluation of redundant or contradicting predicates based on set-containment or mutual-exclusion between the predicates’ constant sets. We do not further elaborate on such logical optimization since query minimization and equivalence [3] has been a well-established database topic.

The above optimization is applied without evaluating predicates because it is based on algebraic equivalences that are data-independent. A more general optimization is to prune unnecessary set predicates during query evaluation. The idea is as follows. Suppose a query has conjunctive set predicates \(p_1, ..., p_n\). We evaluate the predicates sequentially, obtain the satisfying groups for each predicate, and thus obtain the groups that satisfy all the evaluated predicates so far. If no satisfying group is left after \(p_1, ..., p_m\) \((m<n)\) are processed, we terminate the query evaluation, without processing the remaining predicates. Similarly, if the predicates are disjunctive, we stop the evaluation if all the groups satisfy at least one of \(p_1, ..., p_m\). In general the smaller the value \(m\) is, the cheaper the evaluation cost is. (The cost difference between predicates will also have an impact. We are assuming equal predicate cost for simplicity. Optimization by predicate-specific cost estimation warrants further study.)

The number of “necessary” predicates before we can stop, \(m\), depends on the evaluation order of predicates. For instance, suppose the query has three conjunctive predicates \(p_1, p_2, p_3\), which are satisfied by 10%, 50%, and 90% of the groups, respectively. Consider two different orders of predicate evaluation, \(p_1 p_2 p_3\) and \(p_3 p_2 p_1\). The former order may have a much larger chance than the latter order to terminate after
2 predicates, i.e., reaching zero satisfying groups after \(p_1 \) and \(p_2 \) are evaluated. Therefore different predicate evaluation orders can potentially result in much different costs. Given \(n \) predicates, by randomly selecting an order out of \(n! \) possible orders, the chance of hitting a good efficient one is slim, not to mention the optimal evaluation plan. This is a typical scenario in query optimization. Our goal is thus to design a method to select a good order, i.e., an order that results in a small \(m \).

Such good order hinges on the “selectivities” of predicates. Suppose a query has predicates \(p_1, \ldots, p_m \), which are in either conjunctive form (connected by AND) or disjunctive form (OR). Each predicate can have a preceding NOT.\(^4\) Our query optimization rule is to evaluate conjunctive (disjunctive) predicates in the ascending (descending) order of selectivities, where the selectivity of a predicate is its number of satisfying groups. Therefore the key challenge in optimizing multi-predicate queries becomes estimating predicate selectivity.

To optimize an SQL query with multiple selection predicates that have different selectivities and costs, the idea of predicate migration [6] is to evaluate the most selective and cheapest predicates first. The intuition of our method is similar to that. However, we focus on set predicates, instead of the tuple-wise selection predicates studied in [6]. Consequently the concept of “selectivity” in our setting stands for the number of satisfying groups. Therefore the key challenge in optimizing multi-predicate queries becomes estimating predicate selectivity.

Given a query with multiple set predicates, we assume histograms are available on the grouping attributes and the set predicate attributes. Multi-dimensional histograms, such as MHIST [18], capture the correlation between attributes. Therefore the techniques developed in this section can be extended to the scenario of multi-attribute grouping and multi-attribute set predicate, by using multi-dimensional histograms.

For simplicity of discussion, from now on we assume single-attribute grouping and single-attribute set predicate. Moreover, we also assume the grouping and set predicate attributes are independent of each other. Multi-dimensional histograms can extend our techniques to such scenario as well.

Suppose the grouping attribute is \(g \). The selectivity of an individual set predicate \(p = v \text{ op } \{ v_1, \ldots, v^n \} \), i.e., the number of groups satisfying \(p \), is estimated by the following formula:

\[
\# g = \sum_{j=1}^{\#} P(g_j)
\]

\(\# g \) is the number of distinct groups, which is estimated by \(\# g = \sum_{j=1}^{\#} w_i(g) \). \(P(g_j) \) is the probability of group \(g_j \) satisfying \(p \), assuming the groups are independent of each other.

The histogram on \(v \) partitions the tuples in a group into disjoint subgroups. We use \(R_j \) to denote the tuples that belong to group \(g_j \), i.e., \(R_j = \{ r | r \in R, r.g = g_j \} \). We use \(R_{ij} \) to denote the tuples in group \(g_j \) whose values on \(v \) fall into bucket \(b_i(v) \), i.e., \(R_{ij} = \{ r | r \in R_j, r.v = b_i(v) \} \). Similarly the histogram \(h(v) \) divides the constant values \(V = \{ v_1, \ldots, v^n \} \) in predicate \(p \) into disjoint subsets \(V_1, \ldots, V_n \), where \(V = \{ v | v \in b_i(v), v \in V \} \).

A group \(g_j \) satisfies a set predicate on constant values \(\{ v_1, \ldots, v^n \} \) if and only if each \(R_{ij} \) satisfies the same set predicate on \(V_i \). Thus we estimate \(P(g_j) \), the probability that group \(g_j \) satisfies the predicate, by the following formula:

\[
P(g_j) = \prod_{i=1}^{n} P_{\text{op}}(b_i(v), V_i, R_{ij})
\]

\(P_{\text{op}}(b_i(v), V_i, R_{ij}) \) is the probability that \(R_{ij} \) satisfies the same predicate on \(V_i \), based on the information in bucket \(b_i(v) \). Specifically, \(P_{\text{op}}(b_i(v), V_i, R_{ij}) \) is the probability that \(R_{ij} \) subsumes \(V_i \), \(P_{\text{op}}(b_i(v), V_i, R_{ij}) = P_{\text{op}}(b_i(v), V_i, R_{ij}) = P_{\text{op}}(b_i(v), V_i, R_{ij}) \) is the probability that \(R_{ij} \) is contained by \(V_i \), and \(P_{\text{op}}(b_i(v), V_i, R_{ij}) \) is the probability that \(R_{ij} \) equals \(V_i \), by set semantics.

\(P_{\text{op}}(b_i(v), V_i, R_{ij}) \) is estimated based on the number of distinct values in \(b_i(v) \), i.e., \(w_i(v) \) according to the aforementioned continuous value assumption, the number of constant values in \(V_i \), and the number of tuples in \(R_{ij} \), i.e.,

\[
P_{\text{op}}(b_i(v), V_i, R_{ij}) = P_{\text{op}}(w_i(v), |V_i|, |R_{ij}|)
\]

For the above formula, \(w_i(v) \) is stored in bucket \(b_i(v) \) itself and \(|V_i| \) is straightforward from \(V \) and \(b_i(v) \). Based on the attribute independence assumption between \(g \) and \(v \), the size of \(R_{ij} \) can be estimated by the following formula, where \(d_k(g) \) and \(w_k(g) \) are the depth and width of the bucket \(b_k(g) \) that contains value \(g_j \):

\[
|R_{ij}| = d_k(v) \times \frac{|R_j|}{|R|} = d_k(v) \times \frac{d_k(g) / w_k(g)}{|R|}
\]

\(^4\)Therefore our technique does not extend to queries that have both AND and OR in connecting the multiple set predicates.
Note that we do not need to literally calculate $P(g_j)$ for every group in formula (1). If two groups g_{j_1} and g_{j_2} are in the same bucket of g, R_{ij_1}, and R_{ij_2} will be of equal size, and thus $P(g_{j_1})=P(g_{j_2})$.

We now describe how to estimate $P_{op}(N,M,T)$ (i.e., $w_i(v)=N, |V_i|=M, |R_{ij}|=T$), for each operator. Apparently $P_{op}(N,M,0)=0$. Note that $M \leq N$, by the way V was partitioned into $\{V_1, \ldots, V_s\}$.

CONTAIN (op is \supseteq):

When $M>T$, i.e., the number of values in V_i is larger than the number of tuples in R_{ij}, $P(N,M,T)=0$.

When $M=1$, i.e., there is only one constant in V_i, since there are N distinct values in bucket $b_i(v)$, each tuple in group g_j has the probability of $\frac{1}{N}$ to have the value of that constant on attribute v. With totally T tuples in group g_j, the probability that at least one tuple has that value is:

$$P_{\supseteq}(N,1,T) = 1 - \left(1 - \frac{1}{N}\right)^T$$ \hspace{1cm} (5)

When $M>1$, i.e., there are at least two constants in V_i, in group g_j the first tuple’s value on attribute v has a probability of $\frac{1}{M}$ to be one of the values in V_i. If it indeed belongs to V_i, the problem becomes deriving the probability of $T-1$ tuples containing $M-1$ values. Otherwise, with probability $1-\frac{1}{M}$, the problem becomes deriving the probability of $T-1$ tuples containing M values. Therefore we have:

$$P_{\supseteq}(N,M,T) = \frac{M}{N}P_{\supseteq}(N,M-1,T-1)$$

$$+ \left(1 - \frac{M}{N}\right)P_{\supseteq}(N,M,T-1)$$ \hspace{1cm} (6)

By solving the above recursive formula, we get:

$$P_{\supseteq}(N,M,T) = \frac{1}{NT} \sum_{r=0}^{M} (-1)^r \binom{M}{r} (N-r)^T$$ \hspace{1cm} (7)

CONTAINED BY (op is \subseteq):

When $T=1$, straightforwardly $P(N,M,1) = \frac{M}{N}$.

When $T > 1$, every tuple in R_{ij} must have one of the values in V_i on attribute v, for the group to satisfy the predicate. Each tuple has the probability of $\frac{1}{M}$ to have one such value on attribute v. Therefore we can derive the following formula:

$$P_{\subseteq}(N,M,T) = \left(\frac{M}{N}\right)^T$$ \hspace{1cm} (8)

EQUAL (op is $=$):

Straightforwardly $P(N,1,T) = \frac{1}{N}$ and $P(N,M,T)=0$ if $M>T$. For $1\leq M \leq T$, we can derive the following equation:

$$P_e(N,M,T) = \frac{M}{N}P_e(N,M-1,T-1)$$

$$+ P_e(N,M-1,T-1)$$ \hspace{1cm} (9)

That is, for the group to satisfy the predicate, if the first tuple in R_{ij} has one of the constant values in V_i on attribute v (with probability of $\frac{1}{M}$), the remaining $T-1$ tuples should contain either the M or the remaining $M-1$ constant values. Solving this equation, we get

$$P_e(N,M,T) = \frac{1}{NT} \sum_{r=0}^{M} (-1)^r \binom{M}{r} (M-r)^T$$ \hspace{1cm} (10)

<table>
<thead>
<tr>
<th>parameter</th>
<th>meaning</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>set operators</td>
<td>$\supseteq, \subseteq, =$</td>
</tr>
<tr>
<td>C</td>
<td>number of constant values in set</td>
<td>$1, 2, \ldots, 10, 20, \ldots, 100$</td>
</tr>
<tr>
<td>T</td>
<td>number of tuples</td>
<td>$10K, 100K, 1M$</td>
</tr>
<tr>
<td>G</td>
<td>number of groups</td>
<td>$10, 100, \ldots, G$</td>
</tr>
<tr>
<td>S</td>
<td>number of qualifying groups</td>
<td>$1, 10, \ldots, G$</td>
</tr>
</tbody>
</table>

TABLE I

CONFIGURATION PARAMETERS.

VI. Experiments

A. Experimental Settings

We conducted experiments to compare the three methods discussed in previous sections. We also investigated how the methods are affected by important factors with a variety of configurations. The experiments were conducted on a Dell PowerEdge 2900 III server with Linux kernel 2.6.27, dual quad-core Xeon 2.0GHz processors, 2x4MB cache, 8GB RAM, and three 146GB 10K-RPM SCSI hard drivers in RAID5. The reported results are the averages of 10 runs. All the performance data were obtained with cold buffer.

Methods: The compared methods are:

- **Rewrt** (query rewriting approach in Section III-A): We used PostgreSQL 8.3.7 to store the data and execute the translated queries. We set the memory buffer size of PostgreSQL to 24MB, which is sufficient for Agg and $Bitmap$ to hold internal data structures. PostgreSQL provides several table scan and join methods. We made our best effort to obtain the most efficient query plan for each query, by manually investigating alternative plans and turning on/off various physical query operators. Below we only report the numbers obtained by using these hand-picked plans.

- **Agg** (aggregate function-based method in Section III-B): It is implemented in C++. We did not experiment with the scenario when the number of groups exceeds what the memory can accommodate. Thus it was unnecessary to use two-pass hashing-based or sorting-based methods for aggregation.

- **$Bitmap$** (bitmap index-based method in Section IV): It is implemented in C++. We used FastBit\(^5\) for bit-sliced index implementation. Its compression scheme, Word-Aligned Hybrid (WAH) code, makes the compressed bitmap indices efficient even for high-cardinality attributes [25]. The index is built before query time and stored into index files.

While **Rewrt** uses a full-fledged database engine PostgreSQL, both Agg and $Bitmap$ are implemented externally. We acknowledge that **Rewrt** would incur extra overhead from query optimizer, tuple formatting, and so on. Our expectation is to show clear disadvantages of **Rewrt** that very unlikely come from the extra overhead. (At least one order of magnitude slower than $Bitmap$.) The results could encourage database vendors to incorporate the proposed $Bitmap$ method into a database engine.

Queries: We evaluated these methods under various combinations of configuration parameters, which are summarized in Table I. O can be one of the 3 set operators ($\supseteq, \subseteq, =$). C is the

\(^5\)https://sdm.lbl.gov/fasbit.
number of constant values in a predicate, varying from 1 to 10, then 10 to 100. Altogether we have 3 × 19 (O, C) pairs. Each pair corresponds to a unique query with a single set predicate. The constant values always start from 1, incremented by 1, e.g., (2, 2) corresponds to $Q = \gamma_{g, \text{SUM}(a)} v \supseteq \{1, 2\}(R)$. Note that we assume SUM as the aggregate function since its evaluation is not our focus and Algorithm 1 and 2 process all aggregate functions in the same way.

Data Tables: For each of the 3 × 19 single-predicate queries, we generated 61 data tables, each corresponding to a different combination of (T, G, S) values. Given query (O, C) and data statistics (T, G, S), we correspondingly generated a table that satisfies the statistics for the query. The table has schema $R(a, v, g)$, for query $\gamma_{g, \text{SUM}(a)} v \subseteq \{1, \ldots, 10\}(R)$. Each column is a 4-byte integer. The details on how the column values were generated are in Appendix III.

B. Experimental Results

(A) Overall comparison of the three methods:

We measure the wall-clock execution time of Rewrt, Agg, and Bitmap over the 61 data tables for each of the 3 × 19 queries. The comparison of these methods under different queries are pretty similar. We only show the result for one query in Figure 4: $\gamma_{g, \text{SUM}(a)} v \subseteq \{1, \ldots, 10\}(R)$. It demonstrates that Bitmap is often several times more efficient than Agg and is usually one order of magnitude faster than Rewrt.

The low efficiency of Rewrt is due to the awkwardness of the translated queries and the incompetence of the current database engine in processing such queries, even though the semantics being processed is fairly simple. The performance advantage of Agg over Rewrt shows that the simple query algorithm could improve the efficiency significantly. The shown advantage of Bitmap over Agg is due to the fast bit-wise operations and the skipping of chunks of 0s enabled by bitmap index, compared to the verbatim comparisons used by Agg.

(B) Experiments on general queries:

Two of the advantages of Bitmap mentioned in Section IV-B could not be demonstrated by the above experiment. First, it only needs to process the necessary columns, while Agg (and Rewrt) have to scan the full table before irrelevant columns can be projected out. The tables used in the experiments for Figure 4 have the schema $R(a, v, g)$ which does not include other columns. We can expect the costs of Rewrt and Agg to increase by the width of the table, while Bitmap will stay unaffected. Second, the Bitmap method also enables convenient and efficient integration with selections and joins, while the above experiment is on a single table.

We thus designed queries on TPC-H benchmark database [23] and compared the performances of the three methods. The results of six such queries are in Table II. The first test query TPCH-1 is described below and the remaining queries can be found in Appendix IV.

(TPCH-1) Get the total sales of each brand that has business in both USA and Canada. We use view but it can also be written in a single query:

- **CREATE VIEW R1 AS**
  ```sql
  SELECT P_BRAND, SUM(L_QUANTITY) 
  FROM LINEITEM
  HAVING SET(N_NAME) CONTAIN ('United States', 'Canada')
  ```

In these queries, the grouping and set predicates are defined over the join result of multiple tables. Note that the joins are star-joins between keys and foreign keys. For Rewrt and Agg, we first pre-joined the tables to generate a single joined table, and then executed the algorithms over that joined table. The data tables were generated by TPC-H data generator. The joined table has about 6 million tuples for TPCH-1 and TPCH-6 and 0.8 million tuples for the other 4 queries. The sizes of individual tables and other detailed information are in Appendix IV. Regular B+ tree indexes were created on both the individual tables and the joined table, to improve query efficiency. Therefore in Table II we report the costs of Rewrt and Agg together with the costs of pre-join. For Bitmap we created bitmap join index [14] according to the foreign key joins in the query, based on the description in Section IV-B. For example, we index the tuples in table LINEITEM on the values of attribute N_NAME which is from a different table NATION. With such a bitmap join index, given query TPCH-1 (and similarly other queries), the Bitmap method works in the same way as for a single table, without pre-joining the tables.

Table II shows that, even with the tables pre-joined for Rewrt and Agg, Bitmap is still often 3-4 times faster than Agg and more than 10 times faster than Rewrt. If we consider the cost of join, the performance gain is even more significant.

(C) Detailed breakdown and the effect of parameters:

To better understand the performance difference between the three methods, we looked at the detailed breakdown of their execution time. We further investigated the effect of various configuration parameters. In these experiments, we measured the execution time under various groups of configurations of four relevant parameters, C, T, G, and S. In each group of experiments, we varied the value of one parameter and fixed the remaining three. We then executed all three methods, for all 3 operators. In general the trend of curve remains fairly similar when we use different values for three fixed parameters and vary the values of the fourth parameter. Therefore we only report the result from four representative configuration groups, varying one parameter in each group. Due to space limitations, we only report the results for Bitmap in Figure 5. The detailed

<table>
<thead>
<tr>
<th>Query</th>
<th>Rewrt+Join</th>
<th>Agg+Join</th>
<th>Bitmap</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPCH-1</td>
<td>10.64+31.64 secs.</td>
<td>2.65+1.64 secs.</td>
<td>0.83 secs.</td>
</tr>
<tr>
<td>TPCH-2</td>
<td>4.37+1.51 secs.</td>
<td>0.71+1.51 secs.</td>
<td>0.19 secs.</td>
</tr>
<tr>
<td>TPCH-3</td>
<td>1.20+1.76 secs.</td>
<td>0.37+1.76 secs.</td>
<td>0.23 secs.</td>
</tr>
<tr>
<td>TPCH-4</td>
<td>0.92+0.95 secs.</td>
<td>0.36+0.95 secs.</td>
<td>0.23 secs.</td>
</tr>
<tr>
<td>TPCH-5</td>
<td>3.28+0.94 secs.</td>
<td>0.41+0.94 secs.</td>
<td>0.23 secs.</td>
</tr>
<tr>
<td>TPCH-6</td>
<td>2.98+1.99 secs.</td>
<td>1.36+0.99 secs.</td>
<td>1.55 secs.</td>
</tr>
</tbody>
</table>

Table II

RESULTS ON GENERAL QUERIES.
breakdown for Rewrt and Agg are in Appendix V.

Figure 5 shows the results of four configuration groups for Bitmap. For each group, the upper and lower figures show the execution time and its detailed breakdown. Each vertical bar represents the execution time given one particular query (O,C) and the stacked components of the bar represent the percentages of the costs of all the individual steps. Bitmap has four major steps, as shown in Algorithm 2: Step 1– obtain the vectors for set predicate constants; Step 2– obtain the group IDs of each tuple; Step 3– find qualifying groups; Step 4– get the aggregate values for qualifying groups. The figures show that no single component dominates the query execution cost. The breakdown varies as the configuration parameters change. Therefore we shall analyze it in detail while we investigate the effect of the configuration parameters below.

Figure 5(a) shows that the execution time of Bitmap increases linearly with C (number of constant values in set predicate). (Note that the values of C increase by 1 initially and by 10 later, therefore the curves appear to have an abrupt change at C=10, although they are linear.) This observation can be explained by the detailed breakdown in Figure 5(a). The costs of Step 1 and Step 3 increase as C increases, thus get higher and higher percentages in the breakdown. This is because the method needs to obtain the corresponding vector for each constant and find the qualifying groups by considering all the constants. On the other hand, the costs of Step 2 and 4 have little to do with C, thus get decreasing percentages.

Figure 5(b) shows the execution time of Bitmap increases slowly with S (number of qualifying groups). With more and more groups satisfying the query condition, the costs of Step 1-3 increase only moderately since C and G do not change, while Step 4 becomes dominating because the method has to calculate the aggregates for more and more qualifying groups.

As Figure 5(c) shows, the cost of Bitmap does not change significantly with G (number of groups). However, the curves do show that the method is least efficient when there are very many or very few groups. When G increases, with the number of satisfying groups (S) unchanged, the number of tuples matching the constants becomes smaller, resulting in cheaper cost of bit vector operations in Step 1. The number of tuples per group decreases, thus the cost of Step 4 decreases. These two factors lower the overall cost, although the cost of Step 2 increases due to more vectors in BSI(g). When G reaches a large value such as 100,000, the cost of Step 2 becomes dominating, making the overall cost higher again.

Figure 5(d) shows that, naturally, Bitmap scales linearly with the number of tuples in the data (T). One interesting observation is, when T increases, Step 1 becomes less dominating and Step 4 becomes more and more significant.

(D) Selectivity Estimation and Predicate Ordering

We also conducted experiments to verify the accuracy and effectiveness of the selectivity estimation method in Section V. Here we use the results of three queries (MPQ₁, MPQ₂, MPQ₃), each on a different synthetic data table, to demonstrate. The values of grouping attribute g and set predicate attribute v are independently generated, each following a normal distribution. Each MPQ has three conjunctive set predicates, p₁, p₂, and p₃. The predicates are manually chosen so that they have different selectivities, shown in the real selectivity column of Table III. Predicate p₃ is most selective, with 10% to 20% satisfying groups; p₁ is least selective, with around 90% satisfying groups; p₂ has a selectivity in between.

To estimate set predicate selectivity, we employed two histograms over g and v, respectively. The data tables have about 40–60 distinct values in v and 10000 distinct values in g. We built 10 and 100 equi-width buckets, on v and g, respectively. Table III shows that the method of Section V produces selectivity estimation that is sufficiently accurate to capture the order of different predicates by their selectivity.

Table IV shows that our method is effective in choosing efficient query plans. As discussed in section V, based on the estimated selectivity, our optimization method chooses a plan that evaluates conjunctive predicates in the ascending order of selectivity. The execution terminates early when the evaluated predicates result in empty satisfying groups. Given each query MPQ, there are six possible orders in evaluating the three predicates, shown as plan₁–plan₆ in Table IV. Since the order of estimated selectivity is p₃ < p₂ < p₁, our method chooses plan₆ over other plans, based on the speculation that it has a
better chance to stop the evaluation earlier. Plan6 evaluates p_{i3} first, followed by p_{i2}, and finally p_{i1} if necessary.

In all three queries, the chosen plan plan6 terminated after p_{i3} and p_{i2}, because no group satisfies both predicates. By contrast, other plans (except plan4) evaluated all three predicates. Therefore their execution time is 3 to 4 times of that of plan6. Note that plan4 saves the cost by about 60%, by just avoiding p_{i1}, out of 3 predicates. This is due to the different evaluation costs of predicates. The least selective predicate, p_{i1}, naturally is also the most expensive one. This indicates that, selectivity and cardinality will be the basis of cost-model in a cost-based query optimizer for set predicates, consistent with the common practice in DBMSs. Developing such a cost model is our future work plan. We also note that plan4 is equally efficient as plan6 for these queries, because they both terminate after p_{i2} and p_{i3} and no plan can stop after only one predicate.

VII. CONCLUSION

We propose to extend SQL to support set-level comparisons by a new type of set predicates. Such predicates, combined with grouping, allow selection of dynamically formed groups by comparison between a group and a set of values. We presented three evaluation methods for queries with set predicates. Comprehensive experiments on synthetic and TPC-H data show that the bitmap index-based approach can be several times to orders of magnitude more efficient than the query rewriting and the aggregate function-based approach. For optimizing queries with multiple set predicates, we designed a histogram-based probabilistic method of set predicate selectivity estimation. The estimation governs the evaluation order of multiple predicates, producing efficient query plans.

REFERENCES

APPENDIX I

DETAILS OF THE QUERY REWRITING APPROACH

We can formally prove by relational algebra that a query with set predicates can be translated into standard SQL queries. There could be multiple ways in rewriting a query. We will not enumerate all of them.

First, it is easy to show
\[\gamma_{\text{A}}(R) = \gamma_{\text{A}}(R \bowtie \gamma_{\text{A}}(R)). \]
\(\gamma_{\text{C}}(R) \) selects the satisfying groups. Joining the satisfying groups with \(R \) on grouping attributes and then computing aggregates will generate the correct query results.

Now we consider the rewriting of \(\gamma_{\text{C}}(R) \). Given two predicates, i.e., \(C = C_1 \) AND OR \(C_2 \), we rewrite for each set predicate separately and then put them together, by using INTERSECT for AND and UNION for OR.

\[\gamma_{\text{C}}(R) = \gamma_{\text{C}_1}(R) \cap \gamma_{\text{C}_2}(R) \]
\[\gamma_{\text{C}}(R) = \gamma_{\text{C}_1}(R) \cup \gamma_{\text{C}_2}(R) \]

Given a predicate with a preceding \(\text{NOT} \), i.e., \(C = \text{NOT} C' \), we rewrite by using set difference operation.

\[\gamma_{\text{C}}(R) = \pi_R(R) - \pi_{\text{C}}(R) \]

If \(C \) contains multiple predicates \(C_1 \ldots C_m \) connected by Boolean operators (AND, OR, NOT), we rewrite by keep applying the above algebraic rules.

Now we focus on how to rewrite a single set predicate. A CONTAIN predicate \(C \supseteq \{c_1, \ldots, c_n\} \) can be rewritten by:

\[\gamma_{\text{C}}(R) = \pi_{\text{C}}(R) = \pi_R(R) \cap \pi_{c_1 \in \ldots \in c_n}(R) \]

A CONTAINED BY predicate \(C \subseteq \{c_1, \ldots, c_n\} \) can be rewritten by:

\[\gamma_{\text{C}}(R) = \pi_{\text{C}}(R) = \pi_R(R) \cap \pi_{c_1 \not\in \ldots \not\in c_n}(R) \]

An EQUAL predicate \(C = \{c_1, \ldots, c_n\} \) is rewritten by:

\[\gamma_{\text{C}}(R) = \pi_{\text{C}}(R) = (\pi_{\text{C}}(R) \cap \ldots \cap \pi_{c_1 \neq \ldots \neq c_n}(R)) - \pi_R(R) \cap \pi_{c_1 \not\in \ldots \not\in c_n}(R) \]

Below are some examples to show how to apply the above algebraic rules in query rewriting.

Rewriting CONTAIN: Consider the query Q1 in Section II, which has a CONTAIN predicate. It can be rewritten using INTERSECT, as shown in the following Q1’.

\[
\text{Q1’: SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT SELECT student FROM SC WHERE course = ‘CS102’}
\]

If the SELECT clause in the query contains aggregate values, the rewritten query needs to be joined with the original table on the grouping attributes. For instance, suppose the SELECT clause in Q1 is SELECT student, COUNT(*), i.e., we want to identify the qualifying students and the number of courses that they have taken, the rewritten query will be:

\[
\text{SELECT student, COUNT(*) FROM SC,}
\]
\[
\text{(SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT}
\]

ALTERNATIVELY a subquery instead of join can be used to obtain the aggregate values:

\[
\text{SELECT student FROM SC EXCEPT SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT}
\]

Rewriting CONTAINED BY: The CONTAINED BY predicate can be rewritten by using EXCEPT. For instance, the rewritten query for Q3 in Section II is:

\[
\text{Q3’: SELECT student FROM SC EXCEPT SELECT student FROM SC WHERE course = ‘CS102’ GROUP BY student}
\]

Rewriting EQUAL: The rewriting of EQUAL predicates naturally combines that of CONTAIN and CONTAINED BY, since two sets \(S_1 = S_2 \) if and only if \(S_1 \subseteq S_2 \) and \(S_1 \supseteq S_2 \). For instance, Q4 in Section II can be rewritten as:

\[
\text{Q4’: SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT SELECT student FROM SC WHERE course = ‘CS102’ EXCEPT SELECT student FROM SC WHERE course <> ‘CS101’ AND course <> ‘CS102’}
\]

Rewriting General Queries: To rewrite more complex queries with multiple predicates, we use the rewriting of individual predicates as the building blocks and connect them together by their logical relationships. For instance, given the following query:

\[
\text{SELECT student, AVG(grade) FROM SC GROUP BY student HAVING MAX(grade) = 4 OR SET(course) CONTAIN {‘CS101’, ‘CS102’}}
\]

The rewritten query is:

\[
\text{SELECT student, AVG(grade) FROM SC,}
\]
\[
\text{(SELECT student FROM SC GROUP BY student HAVING MAX(grade) = 4)
\]
\[
\text{UNION (SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT}
\]
\[
\text{SELECT student FROM SC WHERE course = ‘CS102’))}
\]
\[
\text{UNION (SELECT student FROM SC WHERE course = ‘CS101’ INTERSECT}
\]
\[
\text{SELECT student FROM SC WHERE course = ‘CS103’)))}
\]

GROUP BY student

Moreover, as mentioned in Section II, the grouping and set predicates can be defined over a relation \(R \) that is the result of a subquery. Even though our examples only use a single table, the general applicability is straightforward.
APPENDIX II
SUPPORTING GENERAL QUERIES WITH SET PREDICATES

A. Set Predicates under Bag Semantics

Our discussion in the paper has been focusing on set semantics. However, the query semantics and processing methods can be extended to bag semantics as well. Below we will explain such extension for each of the three approaches.

Query Rewriting Approach: Bag semantics has no impact on our algebraic rules with regard to aggregation and logic operations (AND, OR, NOT). We only need to modify the algebraic rules for rewriting a single set predicates. The essence is to use SQL GROUP BY and COUNT to enforce constraints on the number of duplicate values. To simplify our discussion, here we use an example to demonstrate how to rewrite a CONTAIN predicate under bag semantics, without giving the details of algebraic rules. The rewriting of CONTAINED BY and EQUAL predicates is very similar.

The following query looks for students that have taken CS102 at least twice and have also taken CS101.

\[
\text{SELECT student FROM SC GROUP BY student HAVING COUNT(*)>=2)}
\]

The rewritten query is

\[
\text{SELECT student FROM SC WHERE course = 'CS101' INTERSECT (SELECT student FROM SC WHERE course = 'CS102' GROUP BY student HAVING COUNT(*)>=2)}
\]

Aggregate Function-Based and Bitmap Index-Based Approaches: In Algorithm 1 and 2, in addition to the hash table \(M\) of Boolean mask values, we can maintain an extra hash table that stores arrays of integers. For each group, the corresponding array records how many times each \(v\) value has been encountered in the group. For CONTAIN/CONTAINED BY/EQUAL, the count of each value should be no less than/no more than/equal to the corresponding count in the set predicate, otherwise the group does not qualify.

B. Nonliteral and Range-Based Set Predicate Operand

According to the syntax in Section II, the right operand of a set predicate is a set of literal values. We simply extend the syntax to allow this operand be the result of a sub-query, e.g., \(\text{SET}(\text{course})\) CONTAINED BY (SELECT course_id FROM courses WHERE dept='CS'). The impact of this general syntax on the three evaluation approaches is minimal. The subquery is evaluated first and the original operand is replaced by the set of query results.

For data types such as numeric attributes and dates, range-based values can be used in the operand, in two ways.

1. One or more values in the operand can be ranges. For example, \(\text{SET}(\text{size})\) CONTAIN \([1,10], [25,30]\) requires the group to have at least two range values such that the first one is within the range \([1,10]\) and the second one is within the range \([25,30]\). A group such as \(\{3,4,15,27\}\) would qualify because \(3\) (or \(4\)) satisfies the first range and \(27\) satisfies the second range.

The query rewriting approach can be straightforwardly modified to handle such predicates. The rewritten query for the aforementioned predicate is as follows.

\[
\text{SELECT group_attr FROM R WHERE size>=1 AND size<10 INTERSECT SELECT group_attr FROM R WHERE size>=25 AND size<30}
\]

For extending the aggregate function-based method to range-based values, we just need to modify Line 8 and 11 of Algorithm 1. To be more specific, we replace \(v\) by \(v\) by \(v\in\text{range}\) and \(v\) by \(v\notin\text{range}\).

With regard to the bitmap index-based method, we modify Line 1 and 2 of Algorithm 2. Basically, the \(\text{QueryBI}\) function should return a bit vector for each range, which is naturally supported by both bit-sliced index and regular bitmap indexes [20], [24].

2. The operand itself is a range. For example, predicate \(\text{SET}(\text{size})\) CONTAINED BY \([1,10]\) requires the values of \(\text{size}\) in a qualifying group to be subsumed by range \([1,10]\). Another example is \(\text{SET}(\text{size})\) CONTAINED \([1,10]\) which requires the group to have all the \(10\) values from \(1\) to \(10\). Note that such a CONTAIN predicate is not meaningful on attribute \(\text{size}\).

With regard to a CONTAIN predicate, we can simply enumerate every value in the range and apply the three approaches without change.

With regard to a CONTAINED BY predicate, we extend the three approaches in ways similar to case (1). For the query rewriting approach, the rewritten query of the above CONTAINED BY predicate is as follows.

\[
\text{SELECT group_attr FROM R EXCEPT SELECT group_attr FROM R WHERE size<1 AND size>10}
\]

For extending the aggregate function-based method, we just need to modify Line 11 of Algorithm 1. To be more specific, we replace \(v\) by \(v\in\text{range}\) and \(v\notin\text{range}\).

With regard to the bitmap index-based method, we replace Line 1 and 2 of Algorithm 2 by a \(\text{QueryBI}\) function to obtain a bit vector for the range.

C. Integration and Interaction with Selection and Join Conditions

In a general query \(\gamma\subseteq\mathcal{A}(R)\), relation \(R\) could be the result of other operations such as selections and joins.

For selection condition, suppose our query has a set of conjunctive/disjunctive selection conditions \(c_1,\ldots,c_k\), where each \(c_i\) can be either a point condition \(a_i=b_i\) or a range condition \(l_i\leq a_i\leq u_i\). We first obtain a vector \(\text{vec}_R\) that represents the result of the selection conditions. If a tuple does not belong to relation \(R\), we must set its corresponding bit in \(\text{vec}_R\) to 0. After querying the bitmap indexes to obtain the vectors \(\text{vec}_{c_i}\) for constant values in the set predicates (Step 1 of Algorithm 2), the vectors can be intersected with \(\text{vec}_R\) before they are further used in the later stages of the algorithm.

There is much work in the literature (e.g., [2], [26], [15]) on answering selection queries using bitmap index, i.e., getting \(\text{vec}_R\). The essence is to compute one vector \(\text{vec}_{c_i}\) for
each condition \(c_i \), such that \(\mathbf{vector}_{c_i} \) contains the bits for tuples satisfying the condition. After bitwise AND/OR operations on the vectors of all the conditions, the resulting vector is \(\mathbf{vector}_R \). The bit vector \(\mathbf{vector}_{c_i} \) is computed using bitmap operations over the bitmap index on the attribute \(a_i \) in condition \(c_i \). In order to get \(\mathbf{vector}_{c_i} \) with a small number of bitmap operations, it may be necessary to build the bitmap index using some encoding schemes (e.g., [2], [26]). For instance, some scheme requires only one bitmap operation for any one-side range selection condition and some requires only two operations for any two-side condition.

When join conditions exist in the query, we assume the tables have a snowflake-schema, consisting of one fact table (e.g., `lineitem` in TPC-H [23]), and multiple dimension tables (e.g., `orders`, `nation`, `customer`, `supplier`). Each dimension is described by a hierarchy, with one dimension table for each node on the hierarchy. The fact table is connected to the dimensions by foreign keys. The tables on each dimension are also connected by keys and foreign keys. As a special case of snowflake-schema, star-schema has only one table on every dimension, thus no hierarchy. (The join queries under star-schema are so-called “star-joins”.)

Under such assumption, our technique can be easily extended to handle join queries. Consider a simple case with only two tables, where \(S \) is the fact table and \(T \) is the dimension table, \(j1 \) is a key of \(T \) and \(j2 \) is the corresponding foreign key in \(S \). Due to the foreign key constraint, there exists one and only one tuple in \(T \) joining with each and every tuple \(s \in S \). Therefore for a join condition \(T.j1=S.j2 \), virtually all the join results are in \(S \), with some attributes stored in \(S \) and some other attributes in \(T \). Therefore, for each attribute \(a \) in the schema of \(T \) except \(j1 \) (since \(T.j1=S.j2 \) and we already have \(j2 \) in \(S \)), we can construct a bitmap index on \(a \) for the tuples in \(S \), even though \(a \) is not an attribute of \(S \).

In general, we can follow this way to construct bitmap index for the tuples in the single fact table, on all relevant attributes in the dimension tables. Thus the selection conditions involving these attributes can be viewed as being applied on the fact table only. A join query can then be processed like a single table query. More details about such idea of building bitmap join index are in [14].

APPENDIX III

COLUMN VALUE GENERATION

For our synthetic tables \(R(a,v,g) \) (Section VI-A), the values of column \(a \) are randomly generated. The values in column \(g \) are generated by following a uniform distribution, to make sure there are \(G \) groups, i.e., there are about \(T/G \) tuples in each group. We randomly choose \(S \) out of the \(G \) groups to be qualifying groups. For the tuples in each qualifying group, we generate their values on column \(v \) in a way such that the group satisfies the set predicate. The \(v \) values for the \(G-S \) unsatisfying groups are similarly generated, by making sure the groups cannot satisfy the set predicate while generating the tuples. For example, if the query is \(\gamma_g.SUM(v)\geq\{1,2\}(R) \), for a qualified group, we randomly select 2 tuples and set their \(v \) values to 1 and 2, respectively. The \(v \) values for the remaining tuples in the group are generated randomly. Given a group to be disqualified, we randomly decide if 1, 2, or both should be missing from the group, and then generate the values randomly from a pool of numbers excluding the missing values.

APPENDIX IV

TPC-H EXPERIMENTS

Table V shows the sizes of original TPC-H tables generated by TPC-H data generator and the sizes of joined tables used in our experiments, i.e., R1 to R6 in queries TPCH-1 to TPCH-6, respectively.

<table>
<thead>
<tr>
<th>TPC-H table</th>
<th>Size</th>
<th>Joined table</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>200000</td>
<td>R1</td>
<td>6001215</td>
</tr>
<tr>
<td>PARTSUPP</td>
<td>800000</td>
<td>R2</td>
<td>800000</td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>100000</td>
<td>R3</td>
<td>800000</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>150000</td>
<td>R4</td>
<td>800000</td>
</tr>
<tr>
<td>NATION</td>
<td>25</td>
<td>R5</td>
<td>800000</td>
</tr>
<tr>
<td>LINEITEM</td>
<td>6001215</td>
<td>R6</td>
<td>6001215</td>
</tr>
</tbody>
</table>

TABLE V

SIZE OF TABLES IN TPC-H EXPERIMENTS.

(TPCH-2) Get the available quantity for each part that is only available from suppliers in member nations of G8:

```sql
CREATE VIEW R2 AS
SELECT P_PARTKEY, PS_AVAILQTY, N_NAME FROM PARTSUPP, SUPPLIER, PART
WHERE PS_PARTKEY=P_PARTKEY AND PS_SUPPKEY=S_SUPPKEY AND S_NATIONKEY=N_NATIONKEY;
SELECT PS_PARTKEY, SUM(PS_AVAILQTY) FROM R2
GROUP BY PS_PARTKEY
HAVING SET(N_NAME) CONTAINED BY {'France', 'Germany', 'Japan', 'United Kingdom', 'United States', 'Canada', 'Russia', 'Italy'}
```

(TPCH-3) Get the available quantity of parts for each supplier which provides parts of brand #13 and brand #42 :

```sql
CREATE VIEW R3 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_BRAND FROM PARTSUPP, PART
WHERE PS_PARTKEY=P_PARTKEY;
SELECT PS_SUPPKEY, SUM(PS_AVAILQTY) FROM R3
GROUP BY PS_SUPPKEY
HAVING SET (P_BRAND) CONTAIN ('Brand#13', 'Brand#42')
```

(TPCH-4) Get the available quantity of parts for each supplier which provides parts of size 30, 31, and 32:

```sql
CREATE VIEW R4 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_SIZE FROM PARTSUPP, PART
WHERE PS_PARTKEY=P_PARTKEY;
SELECT PS_SUPPKEY, SUM(PS_AVAILQTY) FROM R4
GROUP BY PS_SUPPKEY
HAVING SET (P_SIZE) CONTAIN ('30', '31', '32')
```

(TPCH-5) Get the available quantity of parts for each supplier which only provides parts manufactured by MFGR#1-#5:

```sql
CREATE VIEW R5 AS
SELECT PS_SUPPKEY, PS_AVAILQTY, P_MFGR
```

Fig. 6. Execution time of Rewrt and its breakdown.

Fig. 7. Execution time of Agg and its breakdown.

FROM PARTSUPP, PART
WHERE PS_PARTKEY=O_PARTKEY;

SELECT PS_SUPPKEY, SUM(PS_AVAILQTY)
FROM R5
GROUP BY PS_SUPPKEY
HAVING SET (P_MFGR) CONTAINED BY {'MFGR#1','MFGR#2',
'MFGR#3','MFGR#4','MFGR#5'}

(TPCH-6) Get the total price of orders for each lineitem that has orders with exactly 5 different priorities, from low to urgent:
CREATE VIEW R6
SELECT L_LINENUMBER, O_TOTALPRICE, O_ORDERPRIORITY
FROM LINEITEM, ORDERS
WHERE L_ORDERKEY=O_ORDERKEY;

SELECT L_LINENUMBER, SUM(O_TOTALPRICE)
FROM R6
GROUP BY L_LINENUMBER
HAVING SET (O_ORDERPRIORITY) EQUAL ('1-URGENT',
'2-HIGH','3-MEDIUM','4-NOT SPECIFIED','5-LOW')

APPENDIX V
BREAKDOWN OF Rewrt AND Agg

Similar to Figure 5 for Bitmap, the execution time and its detailed breakdown for Rewrt and Agg are shown in Figure 6 and 7, respectively, for different configuration groups. For the Rewrt method, the PostgreSQL plans can be roughly divided into three major steps: Step 1– scan the table (several times); Step 2– find qualifying groups that satisfy the query conditions; Step 3– calculate the required aggregates for each qualifying group. For Agg, we divide the cost into table scan and the rest. Similar to what we observed for Figure 5, no single component in the breakdown of Rewrt and Agg dominates the query execution cost. The breakdown varies as the configuration parameters change.

Figure 6(a) shows that the execution time of Rewrt, similar to that of Bitmap, also increases linearly with C (number of constant values in set predicate). The breakdown also changes by C. For example, the Step 3 (calculate aggregates) for CONTAIN (2) gets smaller and smaller percentage. We can understand this by analyzing the plan for the rewritten query of \(\gamma_{q,SUM(a)} \supseteq \{1,2,3\}(R)\), shown in Figure 8. It performs multiple index scans in Step 1 and intersects the scan results in Step 2. Therefore these two steps become more costly as C increases. The last step, calculating aggregates, does the same amount of work, since the aggregating is independent of C. Figure 6(a) also shows large performance difference between different operators when C increases. Given \(T=100K, G=1K, S=10\), the number of tuples with \(R,v\) being 1, 2, ..., or
C is small, in order to have only 10 out of 1,000 groups satisfying the query condition. Therefore for CONTAIN, the set intersect operator in Figure 8 involves small cost. However for CONTAINED BY, the filter operator in Figure 2 produces much more result tuples, making the set difference (Except) operator more costly.

Figure 7(a) shows that the execution time of Agg, different from that of Rewrt and Bitmap, is not affected by C. As the outline in Algorithm 1 shows, the only cost component related to C is the checking of a tuple’s v value against the given C constants (line 8 and 11), which is much cheaper than other components.

Figure 7(b) shows that the execution time of Agg increases with S (number of satisfying groups) under some operators and decreases under others, and the changes are only slight in both cases. Figure 6(b) shows that the behavior of Rewrt is similar to Agg with regard to S in that the execution time increases under some operators and decreases under others. The variations are small for some operators and larger for others. For example, the cost of CONTAINED BY decreases by S. Use Figure 2 to explain again. When more groups satisfy the query condition, the output cardinality of operator Filter becomes smaller, resulting in smaller cost of set difference (Except) operation.

Figure 6(c) shows that, as G (number of groups) in the data increases, the execution time of Rewrt increases substantially for CONTAINED BY and EQUAL, but does not change much for CONTAIN. Use CONTAINED BY as an example. When G increases, with the number of satisfying groups unchanged, the number of tuples matching the constants becomes smaller, resulting in more result tuples from the Filter operator in Figure 2, making the set difference (Except) operator more costly. Figure 7(c) shows that the execution time of Agg increases slowly with G, for the reason similar to why the execution time is not affected much by C.

Figure 6(d) and Figure 7(d) show that, naturally, Rewrt and Agg scale linearly with T (number of tuples in the data table), similar to Bitmap.

```
SELECT sum(a) FROM R, ((SELECT DISTINCT g FROM R INTERSECT Project & WHERE v = 1) INTERSECT (SELECT DISTINCT g FROM R WHERE v = 2) INTERSECT (SELECT DISTINCT g FROM R WHERE v = 3)) AS TMP WHERE R.g = TMP.g GROUP BY R.g
```